считаю класс смежности подгруппы Гекке
для вложения графа Петерсена в Риманову поверхность с родом 1
TODO: это же какая-то подгруппа модулярной группы? у неё есть какие-то свойства (например, арифметичность)?
TODO
у октаэдра есть генератор вида
x*y^-1*x*y*x*y*x^-1*y^-2*x^-1
особенность, что тут два раза подряд y^-1 (в виде y^-2)
в генераторах вложения графа Петерсена я такого не заметил, (x или x^-1) чередуются с (y или y^-1)
интересно проверить для других вложений
f:=FreeGroup("x", "y");
H3:=f/[f.1^2,f.2^3];
hom:=GroupHomomorphismByImages(H3,Group(
(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30),
(1,3,5)(4,7,9)(10,11,13)(15,14,17)(6,16,19)(2,21,23)(8,27,25)(12,29,24)(18,22,28)(20,30,26)),
GeneratorsOfGroup(H3),
[(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30),
(1,3,5)(4,7,9)(10,11,13)(15,14,17)(6,16,19)(2,21,23)(8,27,25)(12,29,24)(18,22,28)(20,30,26)]);
petersen_group:=PreImage(hom,Stabilizer(Image(hom),1));
iso:=IsomorphismFpGroup(petersen_group);
[ <[ [ 1, 1 ] ]|(y*x)^2*y*(x^-1*y^-1)^2*x^-1>,
<[ [ 2, 1 ] ]|y*x*y^-1*x*y*x^-1*y^-1*x^-1*y*x^-1>,
<[ [ 3, 1 ] ]|y^-1*x*y*x*y^-1*x^-1*y*x^-1*y^-1*x^-1>,
<[ [ 4, 1 ] ]|(y^-1*x)^2*(y*x^-1)^3>,
<[ [ 5, 1 ] ]|(y*x)^2*y^-1*x*(y*x^-1)^2*y>,
<[ [ 6, 1 ] ]|y*(x*y^-1)^3*x^-1*y^-1*x^-1*y>
] -> [ F1, F2, F3, F4, F5, F6 ]
x =
0 -1
1 0
y =
0 -1
1 1
(y*x)^2*y*(x^-1*y^-1)^2*x^-1
F1 = (y@x)@(y@x)@y@(xi@yi)@(xi@yi)@xi
1 -2
-3 7
y*x*y^-1*x*y*x^-1*y^-1*x^-1*y*x^-1
F2 = y@x@yi@x@y@xi@yi@xi@y@xi
5 -3
-8 5
y^-1*x*y*x*y^-1*x^-1*y*x^-1*y^-1*x^-1
F3 = yi@x@y@x@yi@xi@y@xi@yi@xi
-5 8
3 -5
(y^-1*x)^2*(y*x^-1)^3
F4 = (yi@x)@(yi@x)@(y@xi)@(y@xi)@(y@xi)
7 -2
-3 1
(y*x)^2*y^-1*x*(y*x^-1)^2*y
F5 = (y@x)@(y@x)@yi@x@(y@xi)@(y@xi)@y
-1 -4
3 11
y*(x*y^-1)^3*x^-1*y^-1*x^-1*y
F6 = y@(x@yi)@(x@yi)@(x@yi)@xi@yi@xi@y
4 5
-5 -6
f:=FreeGroup("x", "y");
H3:=f/[f.1^2,f.2^3];
hom:=GroupHomomorphismByImages(H3,Group(
(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30),
(1,19,18)(2,3,29)(4,5,26)(6,7,22)(8,9,28)(10,11,30)(12,13,24)(14,15,25)(16,17,27)(20,23,21)),
GeneratorsOfGroup(H3),
[(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30),
(1,19,18)(2,3,29)(4,5,26)(6,7,22)(8,9,28)(10,11,30)(12,13,24)(14,15,25)(16,17,27)(20,23,21)]);
petersen_group:=PreImage(hom,Stabilizer(Image(hom),1));
iso:=IsomorphismFpGroup(petersen_group);
[ <[ [ 1, 1 ] ]|(y*x)^2*(y*x^-1)^3>,
<[ [ 2, 1 ] ]|y*x*y^-1*x*y*(x^-1*y^-1)^2*x^-1>,
<[ [ 3, 1 ] ]|y^-1*x*y*x*(y^-1*x^-1)^2*y*x^-1>,
<[ [ 4, 1 ] ]|(y^-1*x)^2*(y*x^-1)^2*y^-1*x^-1>,
<[ [ 5, 1 ] ]|(y*x)^2*y^-1*x*(y*x^-1)^2*y>,
<[ [ 6, 1 ] ]|y*(x*y^-1)^3*x^-1*y^-1*x^-1*y> ]
-> [ F1, F2, F3, F4, F5, F6 ]
F1 = (y@x)@(y@x)@(y@xi)@(y@xi)@(y@xi)
1 0
-5 1
F2 = y@x@yi@x@y@(xi@yi)@(xi@yi)@xi
-2 5
3 -8
F3 = yi@x@y@x@(yi@xi)@(yi@xi)@y@xi
-7 5
4 -3
F4 = (yi@x)@(yi@x)@(y@xi)@(y@xi)@yi@xi
-5 7
2 -3
F5 = (y@x)@(y@x)@yi@x@(y@xi)@(y@xi)@y
-1 -4
3 11
F6 = y@(x@yi)@(x@yi)@(x@yi)@xi@yi@xi@y
4 5
-5 -6
пояснение к алгоритму из статьи
He Y-H and Read J (2015) Hecke Groups, Dessins d’Enfants, and the Archimedean Solids. Front. Phys. 3:91. doi: 10.3389/fphy.2015.00091
We can find the generators for a representative of all the conjugacy classes of subgroups of interest using GAP [6, 31].
- First, we use the permutation data σ_0, σ_1 obtained from each of the Schreier coset graphs (in turn obtained from each of the dessins) to find the group homomorphism by images between the relevant Hecke group and a representative of the conjugacy class of subgroups of interest.
- We then use this to define the representative in question.
- Finally, we use the GAP command IsomorphismFpGroup(G), which returns an isomorphism from the given representative to a finitely presented group isomorphic to that representative. This function first chooses a set of generators of the representative and then computes a presentation in terms of these generators.